
Cortex-M23 Software Development

Course Description

Cortex-M23 software development is a 4 days ARM official course.
The course goes into great depth and provides all necessary know-how to
develop software for systems based on Cortex-M23 processor.

The course covers the Cortex-M23 architecture, programmer’s model,
development tools, instruction set, CMSIS, exception handling, memory
model, memory protection unit (MPU), synchronization, efficient C
programming, compiler optimizations, linker optimizations, debug, DSP
instructions, and security extension.

At the end of the course the participant will receive a
certificate from ARM.

Course Duration
4 days

Goals

1. Become familiar with ARMv8-M architecture

2. Become familiar with Cortex-M23 architecture

3. Become familiar with ARMv8-M instruction set

4. Become familiar with the development tools for Cortex-M

5. Be able to handle interrupts and various exceptions

6. Be able to configure and use the MPU

7. Understand the memory model in v8-M architecture

8. Write an efficient C code for Cortex-M processor

9. Be able to debug your design

10. Become familiar with DSP instructions

11. Optimize software for Cortex-M microcontrollers with the compiler
and linker

12. Design a secured system with TrustZone for ARMv8-M

Target Audience

Software engineers that would like developing software and Firmware for
platforms based on Cortex-M23 microcontroller.

Prerequisites

 Computer architecture background
 C and Assembler
 Experience in developing embedded systems

Course Material

 ARM official course book
 Labs handbook
 Keil MDK-ARM

Agenda

Main Topics:

 Introduction to the ARM Architecture
 Cortex-M23 Overview
 ARMv8-M Baseline Programmer’s Model
 Tools Overview for ARM Microcontrollers
 Cortex-M23 Processor Core
 CMSIS Overview
 ARMv8-M Baseline Assembly Programming
 ARMv8-M Baseline Exception Handling
 ARMv8-M Baseline Memory Model
 ArmV8-M Mainline Memory Protection
 ARMv8-M Synchronization
 ARMv8-M Baseline Compiler Hints & Tips
 ARMv8-M Baseline Linker Hints & Tips
 ARMv8-M Embedded Software Development
 ARMv8-M Baseline Debug
 ARMv8-M Mainline DSP Extension
 ARMV8-M Mainline Security Extension

Day #1

 The ARM Architecture
o ARM Ltd
o ARM connected community
o ARM Classic and Cortex advanced processors
o Example ARM based system
o Development of the ARM architecture
o Which architecture is my processor?
o ARM architecture profiles

 Cortex-M23 Overview
o Cortex-M23 processor block diagram
o Architectural features and programmer’s model
o ARMv8-M programmer’s model register view
o Modes of operation and execution
o Memory map
o Bus master interfaces
o Interrupts and exceptions
o Memory protection

o Security attribution
o Power management
o Low power features
o System timer extension
o Floating point unit
o Debug
o Trace
o Configuration: synthesis and fusible
o RTL configuration
o Integration example

 ARMv8-M Baseline Programmer’s Model
o ARMv8-M profile overview
o Data types
o Core registers
o Modes, privilege and stacks
o Exceptions
o Instruction set overview

 Tools Overview for ARM Microcontrollers
o ARM compilation tools
o Introduction to Keil MDK µVision IDE
o ULINK debug adapters
o Development boards
o DS5 and DSTREAM
o Fast Models from ARM
o ARM tools licensing

 Cortex-M23 Processor Core
o Cortex-M23 processor
o Core overview
o Prefetch buffer
o Hardware multiplier
o Hardware divider
o Integer core pipeline
o Pipeline execution
o I/O port
o Execution determinism
o Instruction cycle timing
o System timer - SysTick

 CMSIS Overview
o Beneficial for the ARM Cortex-M ecosystem
o CMSIS partners
o CMSIS structure
o CMSIS bundle and documentation
o CMSIS-Core

o CMSIS-DSP
o CMSIS-Driver
o CMSIS-RTOS
o CMSIS-SVD
o CMSIS-Pack
o CMSIS-DAP

Day #2

 ARMv8-M Baseline Assembly Programming
o Why do you need to know assembler?
o Instruction set basics
o Unified Assembler Language (UAL)
o Data processing instructions
o Load/Store instructions
o Flow control
o Miscellaneous instructions

 ARMv8-M Baseline Exception Handling
o Exception architecture overview
o Micro-coded interrupt mechanism
o Interrupt overheads
o Security extension – TrustZone for ARMv8-M
o Exceptions model

 Exception entry and exit behavior
 Prioritization and control
 External Interrupt sensitivity

o Writing the vector table and interrupts handlers in C/C++ or Assembly
o Internal exceptions and RTOS support
o Fault exceptions

 ARMv8-M Baseline Memory Model
o Introduction to ARMv8-M memory model
o Memory address space and memory segments
o Memory types and attributes
o Endianness
o Barriers

 ARMV8-M Mainline Memory Protection
o Motivation: memory protection
o Memory protection & security attribution
o Default memory map
o Memory Protection Unit (MPU)
o Memory regions overview
o Memory protection regions
o Memory protection unit specification
o MPU registers
o Configuring the MPU
o Region programming
o MemManage faults

Day #3

 ARMV8-M Synchronization
o The need for atomicity
o The race for atomicity
o Critical sections
o Effective atomicity
o LDREX, STREX and CLREX instructions
o Example of lock() and unlock() functions
o Programs still have to be smart
o Example: multi-thread Mutex
o Non-coherent multiprocessor
o Memory attributes
o Configuring sharable memory
o Context switching
o Exclusives Reservation Granule (ERG)
o Example: Multiprocessor Mutex
o Weakly ordered memory and mutual exclusion
o Ordering with DMB
o Exclusive access with LDAEX/STLEX

 ARMv8-M Baseline Compiler Hints & Tips
o Compiler support for ARMv8-M
o Language and procedure call standards
o Compiler optimizations

 Optimization levels
 Selecting a target
 Automatic optimizations
 Using volatile to limit compiler optimizations
 Tail-call optimization

 Instruction scheduling
 Idiom recognition
 Inlining of functions
 Loop transformation
 Branch target optimization
 Link time optimization

o Coding considerations
 Loop termination
 Division by compile-time constants
 Modulo arithmetic
 Floating point

o Mixing C/C++ and assembler
 Inline assembler
 Intrinsics, libraries and extensions
 CMSIS

o Local and global data issues
 Variable types
 Size of local variables
 Global RW/ZI data
 Global data layout
 Unaligned accesses
 Packing of structures
 Alignment of structures
 Alignment of pointers
 Optimization of memcpy()
 Base pointer optimization

 ARMv8-M Baseline Linker Hints & Tips
o Linking basics
o System and user libraries
o Veneers
o Stack issues
o Linker optimizations and diagnostics
o ARM supplied libraries

 ARMv8-M Embedded Software Development
o Default compilation tool behavior
o System startup

 CMSIS-CORE startup and system initialization code
 C library initialization

o Tailoring the image memory map to a device
 Scatter-loading
 Linker placement rules
 Stack and heap management
 Further memory map consierations

o Post setup initialization
o Tailoring the C library to a device

o Building and debugging an image

Day #4

 ARMv8-M Baseline Debug
o Introduction to Debug
o Debug modes and security
o Debug events and reset
o Flash patch and breakpoint unit (FPB)
o Data watchpoint and trace unit (DWT)
o Micro Trace Buffer (MTB)
o Embedded Trace Macrocell (ETM)
o Trace Port Interface Unit (TPIU)

 ARMv8-M Baseline DSP Extension
o Extensions overview
o DSP extension overview
o SIMD instructions
o Saturating arithmetic
o SIMD multiplies
o SIMD comparisons
o ARMv8-M DSP instruction set

 ARMv8-M Baseline Security Extension
o Introduction to TrustZone for ARMv8-M
o Secure and non-secure states
o Calling between security states
o General purpose register banking
o Special purpose register banking
o Memory security
o Secure memory rules
o Memory security determination
o Memory protection unit
o Secure view of SCS
o Non-secure view of SCS
o SAU registers
o Boot security map
o Runtime security map
o SAU region configuration
o Enabling the SAU
o Configuring the SAU with CMSIS
o Branching between secure and non-secure states
o Function calls using branch instructions

o ARM C Language Extensions (ACLE)
o Calling non-secure code from secure code
o Calling secure code from non-secure code
o Creating an import library in ARM compiler 6
o Using the import library
o Secure gateway veneers
o NSC veneers in ARM compiler 6
o TT instruction
o Security state changes using software
o Interrupts and exceptions
o Exception priorities overview
o System handler priority
o Secure exception prioritization
o Configuring the NVIC
o EXC_RETURN
o Taking an exception
o Secure -> non-secure exceptions
o Chaining secure and non-secure exceptions
o Stack frame layout
o Register values after context stacking
o Integrity signature

