
Cortex-M55 Software Development

Course Description

Cortex-M55 software development is a 4 days ARM official course.
The course goes into great depth and provides all necessary know-how to
develop software for systems based on Cortex-M55 processor.

The course covers the Cortex-M55 architecture (Armv8.1-M), processor core,
programmer’s model, instruction set, CMSIS, exception handling, memory
model, caches management, memory protection unit (MPU), MVE,
synchronization, efficient C programming, compiler optimizations, linker
optimizations, debug & trace, floating point and DSP instructions, security
extension and safety features.

At the end of the course the participant will receive a
certificate from ARM.

Course Duration
4 days

Goals

1. Become familiar with ARMv8.1-M architecture

2. Become familiar with Cortex-M55 architecture

3. Become familiar with ARMv8-M instruction set

4. Be able to handle interrupts and various exceptions

5. Be able to configure and use the MPU

6. Understand the memory model in v8-M architecture

7. Manage caches

8. Write an efficient C code for Cortex-M processor

9. Be able to debug your design

10. Become familiar with DSP and FP instructions

11. Optimize software for Cortex-M microcontrollers with the compiler
and linker

12. Design a secured system with TrustZone for ARMv8-M

13. Use the MVE engine to enhance performance with vectorization

Target Audience

Software engineers that would like developing software and Firmware for
platforms based on Cortex-M55 microcontroller.

Prerequisites

 Computer architecture background
 C and Assembler
 Experience in developing embedded systems

Course Material
 ARM official course book
 Labs handbook

Agenda

Main Topics:

 Cortex-M55 Overview
 ARMv8-M Mainline Programmer’s Model
 Cortex-M55 Processor Core
 CMSIS Overview
 ARMv8-M Mainline Assembly Programming
 ARMv8-M Mainline Exception Handling
 ARMv8-M Mainline Memory Model
 ArmV8-M Mainline Memory Protection
 ARMv8-M Synchronization
 ARMv8-M Mainline Compiler Hints & Tips
 ARMv8-M Mainline Linker Hints & Tips
 ARMv8-M Embedded Software Development
 ARMv8-M Mainline Debug & Trace
 ARMv8-M Mainline DSP Extension
 ARMv8-M Mainline Floating-Point Extension
 ARMV8-M Mainline Security Extension
 ARMv8.1-M MVE (M-Profile Vector Extension)

Day #1

 Cortex-M55 Overview
o Cortex-M55 processor block diagram
o Architectural features and programmer’s model
o Processor core
o ARMv8-M programmer’s model register view
o Modes of operation and execution
o Memory map
o Bus interfaces
o Coprocessor interface
o Reliability, availability, and serviceability (RAS) extension
o Interrupts and exceptions
o Memory protection
o Security attribution
o Security gating
o Power management
o Low power features
o System timer
o Extension processing unit (EPU)

o Debug
o Trace
o Configuration: synthesis and fusible
o RTL configuration
o Integration example

 ARMv8-M Mainline Programmer’s Model
o ARMv8-M profile overview
o Data types
o Core registers
o Modes, privilege and stacks
o Exceptions
o Instruction set overview

 ARMv8.1-M Overview
o ARMv8.1-M extensions
o What does Cortex-M55 implement?
o New loops
o New security features
o RAS and FuSa features
o New debug features
o Half-precision floating point

 Cortex-M55 L1 Sub-Systems
o Tightly Coupled Memory (TCM) introduction
o TCM interfaces
o TCM configuration
o Control registers
o TCM transactions
o Accessing TCM via S-AHB
o Booting from TCM
o TCM protocol
o TCM timing
o Instruction & Data cache
o Cache maintenance
o Automatic cache invalidation
o Cache coherency
o Direct cache access registers
o System cache support

 CMSIS Overview
o Beneficial for the ARM Cortex-M ecosystem
o CMSIS partners
o CMSIS structure
o CMSIS bundle and documentation
o CMSIS-Core
o CMSIS-DSP

o CMSIS-Driver
o CMSIS-RTOS
o CMSIS-SVD
o CMSIS-Pack
o CMSIS-DAP

Day #2

 ARMv8-M Mainline Assembly Programming
o Why do you need to know assembler?
o Instruction set basics
o Unified Assembler Language (UAL)
o Condition codes and flags
o Thumb instruction encoding choice
o Data processing instructions
o Load/Store instructions
o Flow control
o Miscellaneous instructions

 ARMv8-M Mainline Exception Handling
o Exception architecture overview
o Micro-coded interrupt mechanism
o Interrupt overheads
o Security extension – TrustZone for ARMv8-M
o Exceptions model
o Writing the vector table and interrupts handlers in C/C++ or Assembly
o Internal exceptions and RTOS support
o Fault exceptions

 ARMv8-M Mainline Memory Model
o Introduction to ARMv8-M memory model
o Memory address space and memory segments
o Memory types and attributes
o Endianness
o Barriers

 ARMV8-M Mainline Memory Protection
o Motivation: memory protection
o Memory protection & security attribution
o Default memory map
o Memory Protection Unit (MPU)
o Memory regions overview
o Memory protection regions
o Memory protection unit specification

o MPU registers
o Configuring the MPU
o Region programming
o MemManage faults

Day #3

 ARMV8-M Synchronization
o The need for atomicity
o The race for atomicity
o Critical sections
o Effective atomicity
o LDREX, STREX and CLREX instructions
o Example of lock() and unlock() functions
o Programs still have to be smart
o Example: multi-thread Mutex
o Non-coherent multiprocessor
o Memory attributes
o Configuring sharable memory
o Context switching
o Exclusives Reservation Granule (ERG)
o Example: Multiprocessor Mutex
o Weakly ordered memory and mutual exclusion
o Ordering with DMB
o Exclusive access with LDAEX/STLEX

 ARMv8-M Mainline Compiler Hints & Tips
o Compiler support for ARMv8-M
o Language and procedure call standards
o Compiler optimizations

 Optimization levels
 Selecting a target
 Automatic optimizations
 Using volatile to limit compiler optimizations
 Tail-call optimization
 Instruction scheduling
 Idiom recognition
 Inlining of functions
 Loop transformation
 Branch target optimization
 Link time optimization

o Coding considerations
 Loop termination
 Division by compile-time constants

 Modulo arithmetic
 Floating point

o Mixing C/C++ and assembler
 Inline assembler
 Intrinsics, libraries and extensions
 CMSIS

o Local and global data issues
 Variable types
 Size of local variables
 Global RW/ZI data
 Global data layout
 Unaligned accesses
 Packing of structures
 Alignment of structures
 Alignment of pointers
 Optimization of memcpy()
 Base pointer optimization

 ARMv8-M Mainline Linker Hints & Tips
o Linking basics
o System and user libraries
o Veneers
o Stack issues
o Linker optimizations and diagnostics
o ARM supplied libraries

 MVE Introduction
o What is MVE?
o Benefits of MVE
o Vector Extension operation
o Vector register file
o VPR register
o Lanes
o Beats
o Vector chaining
o Exception state
o Loop-tail predication
o VPT predication
o Interleaving and de-interleaving load and store
o Vector gather load and scatter store
o How to use MVE

Day #4

 ARMv8-M Mainline Debug
o Introduction to Debug
o Debug modes and security
o Debug events and reset
o Flash patch and breakpoint unit (FPB)
o Data watchpoint and trace unit (DWT)
o Instrumentation trace Macrocell (ITM)
o Micro Trace Buffer (MTB)
o Embedded Trace Macrocell (ETM)
o Trace Port Interface Unit (TPIU)

 ARMv8-M Mainline DSP Extension
o Extensions overview
o DSP extension overview
o SIMD instructions
o Saturating arithmetic
o SIMD multiplies
o SIMD comparisons
o ARMv8-M DSP instruction set

 ARMv8-M Mainline Floating-Point Extension
o Floating point extension overview
o Registers
o Enabling the FPU
o Floating point instructions
o Exceptions
o Basic versus extended frame
o Lazy context save
o Interaction with the security extension
o VLSTM and VLLDM
o Floating point conversion instructions

 ARMv8-M Mainline Security Extension
o Introduction to TrustZone for ARMv8-M
o Secure and non-secure states
o Calling between security states
o General purpose register banking
o Special purpose register banking
o Memory security
o Secure memory rules
o Memory security determination
o Memory protection unit
o Secure view of SCS
o Non-secure view of SCS

o SAU registers
o Boot security map
o Runtime security map
o SAU region configuration
o Enabling the SAU
o Configuring the SAU with CMSIS
o Branching between secure and non-secure states
o Function calls using branch instructions
o ARM C Language Extensions (ACLE)
o Calling non-secure code from secure code
o Calling secure code from non-secure code
o Creating an import library in ARM compiler 6
o Using the import library
o Secure gateway veneers
o NSC veneers in ARM compiler 6
o TT instruction
o Security state changes using software
o Interrupts and exceptions
o Exception priorities overview
o System handler priority
o Secure exception prioritization
o Configuring the NVIC
o EXC_RETURN
o Taking an exception
o Secure -> non-secure exceptions
o Chaining secure and non-secure exceptions
o Stack frame layout
o Register values after context stacking
o Integrity signature
o Stack frame layout with floating point extension

