
RD-1AE

This article explains how to upload firmware for the RD-1AE board in Arm Virtual

Hardware.

Building

Please refer to our Building Stock RD-1AE Images article.

Assembly

The AVH "coreimg" is a simple ZIP archive that represents the firmware for a VM. The

RD-1AE is a complete architecture model that begins execution in the ROM, and as such

requires all firmware elements as produced by the Yocto build. The relevant

components of the build can be found at:

build/tmp_$type/deploy/images/fvp-rd-kronos/

Where $type is one of baremetal, virtualization, or systemready-glibc depending

on which of the firmware use-cases targets was selected at build time. Within this

directory you will find a host of useful build products, but the relevant ones for

assembling the firmware are:

rse-flash-image.img |

RSS boot flash

ap-flash-image.img |

AP Flash

efi-capsule-update-disk-image-fvp-rd-kronos.img |

SD card

rse-nvm-image.bin |

Lifecycle Manager OTP

$type-image-fvp-rd-kronos.wic / arm-systemready-ir-acs-fvp-rd-kronos.wic |

System storage

encrypted_dm_provisioning_bundle.bin |

DM provisioning firmware

encrypted_cm_provisioning_bundle_0.bin |

CM provisioning firmware

rse-rom-image.img |

RSS ROM

https://support.avh.corellium.com/devices/rd1ae/rd1ae-building-stock-fw

Each of these components plays a critical role in the boot architecture of the RD-1AE.

For more information about each element please see the official documentation linked

above.

1. Download an official coreimg firmware container from AVH via the UI. This ZIP

archive will be used as a starting point for updating with custom firmware. To do

this, select the RD-1AE device in the AVH web interface, select the firmware base

you would like to use, and then select Source Image to download the archive.

For the purposes of this document the downloaded file will be referred to

as baremetal-critical-application-monitoring-1.1.1.coreimg.

2. Collect and rename the Yocto build products according to the following

mapping:

Original Name

Updated

Name

rse-flash-image.img boot_flash

ap-flash-image.img ap_flash

efi-capsule-update-disk-image-fvp-rd-kronos.img sdcard

rse-nvm-image.img lcm_otp

Original Name

Updated

Name

$type-image-fvp-rd-kronos.wic / arm-systemready-ir-acs-fvp-rd-

kronos.wic
virtio_0

encrypted_dm_provisioning_bundle.bin unchanged

encrypted_cm_provisioning_bundle_0.bin unchanged

rss-rom-image.img unchanged

3. First, we need to pack the ROM and the CM/DM provisioning firmware bundles

into a nested archive. These firmware components of the RD-1AE are expected to

be loaded into memory at specific addresses by a "debugger", or by the platform

model.

The nested ZIP archive, named firmware, contains the multiple binary firmware

components. When multiple binary files are used, AVH also requires a load.txt file,

which serves as a scatter-gather instruction file, specifying where each component

should be loaded in device memory.

Example load.txt from the RD-1AE Safety Island PSA Secure Storage APIs Architecture

Test Suite (1.1.1) stock firmware:

$ cat load.txt

name:rse-rom-image.img load:0x11000000

name:encrypted_cm_provisioning_bundle_0.bin load:0x31000000

name:encrypted_dm_provisioning_bundle.bin load:0x31080000

For more details about the ZIP archive and firmware file formats for microcontroller-

based devices, refer to the firmware file formats documentation.

The resulting ZIP archive is named firmware and contains the load.txt file and the

multiple binaries:

$ zip firmware encrypted_cm_provisioning_bundle_0.bin

encrypted_dm_provisioning_bundle.bin rse-rom-image.img

adding: load.txt (deflated 44%)

adding: rse-rom-image.img (deflated 67%)

adding: encrypted_dm_provisioning_bundle.bin (deflated 95%)

adding: encrypted_cm_provisioning_bundle_0.bin (deflated 79%)

Without including a load.txt file in the ZIP archive when uploading the custom

firmware, the device may boot into an error state with the message:

There was a problem starting this device: Missing LOAD.TXT.

1. Finally, use zip to update the contents of the downloaded .coreimg ZIP archive

by adding the firmware ZIP archive and the renamed build products. This will

replace the existing files with the updated versions.

$ zip baremetal-critical-application-monitoring-1.1.1.coreimg firmware

ap_flash boot_flash virtio_0 sdcard lcm_otp

updating: firmware (deflated 2%)

updating: sdcard (deflated 98%)

updating: virtio_0 (deflated 85%)

updating: boot_flash (deflated 98%)

updating: ap_flash (deflated 98%)

updating: lcm_otp (deflated 100%)

By updating the contents of the originally downloaded coreimg, an Info.json file will

be present within the coreimg, containing device metadata. If needed, you can modify

the metadata in Info.json (list the files in the ZIP archive with unzip -l <*.coreimg>).

Most elements in this file should remain unchanged, but you may update

the Build and/or Version fields as needed. These changes will be reflected in the UI

dashboard of your VM instance.

https://support.avh.corellium.com/devices/firmware/mcu-firmware#firmware-file-formats
https://support.avh.corellium.com/devices/firmware/mcu-firmware#infoplist-file

diff --git a/yocto/meta-arm-bsp-extras/recipes-bsp/trusted-firmware-

a/files/fvp-rd-kronos/rdkronos.dts b/yocto/meta-arm-bsp-extras/recipes-

bsp/trusted-firmware-a/files/fvp-rd-kronos/rdkronos.dts

index 65ff67b..67dd3b2 100644

--- a/yocto/meta-arm-bsp-extras/recipes-bsp/trusted-firmware-a/files/fvp-rd-

kronos/rdkronos.dts

+++ b/yocto/meta-arm-bsp-extras/recipes-bsp/trusted-firmware-a/files/fvp-rd-

kronos/rdkronos.dts

@@ -604,7 +604,7 @@

 * 0x7fbf 0000 - 0x7fbf ffff : FFA_SHARED_MM_BUF

 */

 reg = <0x00000000 0x80000000 0 0x7fbf0000>,

- <0x00000080 0x80000000 0 0x80000000>;

+ <0x00000080 0x80000000 0x00000003 0x80000000>;

 };

 reserved-memory {

@@ -721,6 +721,21 @@

 #size-cells = <2>;

 ranges;

+ xhci@10000000 {

+ compatible = "generic-xhci";

+ reg = <0 0x10000000 0 0x10000>;

+ interrupts = <0x00 0x33 0x04>;

+ };

+

+ framebuffer@b000000000 {

+ compatible = "simple-framebuffer";

+ reg = <0xb0 0x0 0x0 (1920*1080*4)>;

+ width = <1920>;

+ height = <1080>;

+ stride = <(1920*4)>;

+ format = "a8b8g8r8";

+ };

+

 timer@2a810000 {

 compatible = "arm,armv7-timer-mem";

 reg = <0x0 0x2a810000 0 0x10000>;

In addition, apply the following patch to disable PCI passthrough of an unmodeled AHCI

PCI device. This is relevant only for the virtualization firmware targets.

diff --git a/yocto/meta-arm-auto-solutions/recipes-core/domu-package/domu-

envs.inc b/yocto/meta-arm-auto-solutions/recipes-core/domu-package/domu-

envs.inc

index 56ec5a5..b4ebbf9 100644

--- a/yocto/meta-arm-auto-solutions/recipes-core/domu-package/domu-envs.inc

+++ b/yocto/meta-arm-auto-solutions/recipes-core/domu-package/domu-envs.inc

@@ -35,7 +35,7 @@ DOMU1_NUMBER_OF_CPUS ?= "2"

 DOMU1_VCPU_PIN ?= "cpus = [\"1\", \"2\"]"

 DOMU1_MPAM ?= "mpam = [\"slc=0xc0\"]"

 DOMU1_SVE ?= "sve = \"${DOMU_SVE_SETTING}\""

-DOMU1_PCI_PASSTHROUGH ?= "pci = [\"${DOMU1_PCI_ID}\"]"

+DOMU1_PCI_PASSTHROUGH ?= ""

 DOMU1_EXTRA ?=

"${DOMU1_BRIDGES}\\n${DOMU1_VCPU_PIN}\\n${DOMU1_MPAM}\\n${DOMU1_SVE}\\n${DOMU

1_PCI_PASSTHROUGH}\\n"

 DOMU2_BRIDGES ?= "vif = ['script=vif-openvswitch,bridge=ovsbr0,vifname

