
Static stack-usage analysis for ARM
StackAnalyzer for ARM statically determines the worst-case stack usage of tasks
in safety-critical applications written or generated in C, C++ or Ada and
compiled to run on 32-bit or 64-bit ARM processors.

Your benefits

StackAnalyzer lets you prevent stack overflow for all possible inputs and task
executions under any circumstances — without wasting hardware resources.
StackAnalyzer requires no code instrumentation, no testing, no measuring,
no modification of your system, no modification of your toolchain, and it will
not be misled by potential flaws in debug information.
Using StackAnalyzer is essential in meeting current safety standards such as
ISO 26262, DO-178B/C, IEC-61508, and EN-50128, where statically analyzing
your stack usage is part of the architec tural safety requirements.

Key features

Static analysis of binary files, exactly as they are executed in the final system.



Clear and precise information on the worst-case stack usage by tasks,
procedures, basic blocks, and individual instructions.
Recursions, function pointers, inline assembly code, and library-function calls
are all taken into account.
Automatic recognition of dead code.
Exceptionally fast analysis of complex real-world software.
Freely selectable entry points for the analysis, so you can focus on the worst-
case path or other areas of interest, and speed up the analysis even further.
Difference analysis for comparing the stack usage before and after making
changes to your system.
State-of-the-art GUI with interactive views for analysis results, statistics, code
coverage, control flow, source code, assembly code, DWARF debug info,
symbol tables, analysis configuration, and more.
Command-line mode and customizable XML reports for easy integration into
automated build processes.
Plugins for TargetLink and Jenkins.
Seamless integration with other analysis tools from AbsInt — e.g.
TimingProfiler for profiling the worst-case execution time.

Supported ARM families

ARM7TDMI
ARM9TDMI
StrongARM
ARM9E
ARM10E
XScale
Cortex-A
Cortex-M
Cortex-R

Supported architecture variants and
extensions

ARMv4

https://www.absint.com/timingprofiler/arm.htm


ARMv4T
ARMv5T
ARMv5TE
ARMv6
ARMv6T2
ARMv7
ARMv8
ARMv9 up to and including ARMv9.3
Advanced SIMD/“NEON”
Thumb/Thumb-2
VFP

For the purposes of licensing and pricing, StackAnalyzer for 32-bit
ARM and StackAnalyzer for 64-bit ARM are treated as two separate products.

Also available

Static WCET analysis for ARM
Hybrid WCET analysis for ARM
Timing profiling for Cortex
Memory safety analysis for ARM
Formally verified compilation for ARM and AArch64

Supported compilers

ARM Developer Suite C/C++ compiler
The formally verified CompCert compiler
GNU C/C++ compiler (GCC)
Green Hills MULTI for ARM (C, C++ or Ada)
IAR C/C++ compiler
KEIL MDK-ARM C/C++ compiler suite
HighTec LLVM
Other LLVM/Clang-based ARM compilers
Tasking C/C++ compiler
Texas Instruments C/C++ compiler
Wind River Diab C/C++ compiler

https://www.absint.com/ait/arm.htm
https://www.absint.com/timeweaver/arm.htm
https://www.absint.com/timingprofiler/arm.htm
https://www.absint.com/valueanalyzer/arm.htm
https://www.absint.com/compcert/arm.htm
https://www.absint.com/compcert/arm.htm


The standard license covers one compiler of your choice. Additional compilers
can be unlocked for a surcharge.

Qualification support

Your usage of StackAnalyzer for ARM can be qualified according to ISO 26262,
DO-178B/C, and other safety standards. We offer Qualification Support Kits
that help you simplify and automate your qualification process:

Base QSK
Optional compiler-specific add-on QSKs for

GCC 4.7.4
GCC 4.9.3
GCC 4.9.4
GHS 2019.1.4
GHS 2020.1.4
KEIL 3.1.0.939
KEIL 5.02.0.28
LLVM 10.0.1.1 Helix 23.06
TI 4.9.1
TI 20.2.1.lts

Compiler-specific QSKs for other compilers can be developed on request.

Recent improvements

21.1021.10 22.0422.04 22.1022.10 23.0423.04 23.1023.10

Improved PC-relative switch-table decoding
Added a switch-table pattern that heuristically guesses the switch-table size
The UDF instruction is now handled as a program end
Improved handling of invalid guarded code blocks for Thumb

24.1024.10

https://www.absint.com/stackanalyzer/qualification.htm


See the complete release notes

System requirements

Windows: 64-bit Windows 10 or 11
Linux: 64-bit RHEL 9 or compatible
4 GB of RAM (16 GB recommended)
4 GB of disk space
The Linux version requires the libxcb-* family of libraries to be installed
Support for macOS is possible on request for a surcharge

Download
this factsheet
Download
StackAnalyzer flyer

Free trial

You can try StackAnalyzer for free, on your own applications, for a period of
30 days. Your free-trial package includes online training and tech support.

Get started todayGet started today

© AbsInt.
URL: https://www.absint.com/stackanalyzer/arm.htm

https://www.absint.com/releasenotes/a3/24.10/
https://www.absint.com/factsheets/factsheet_stack_arm_web.pdf
https://www.absint.com/factsheets/factsheet_stack_arm_web.pdf
https://www.absint.com/flyers/StackAnalyzer.pdf
https://www.absint.com/flyers/StackAnalyzer.pdf
https://www.absint.com/stackanalyzer/contact.htm
https://www.absint.com/contact.htm

